Chapter 5: Problem 95
Determine whether the following statements are true and give an explanation or counterexample. Assume \(f, f^{\prime},\) and \(f^{\prime \prime}\) are continuous functions for all real numbers. a. \(\int f(x) f^{\prime}(x) d x=\frac{1}{2}(f(x))^{2}+C\) b. \(\int(f(x))^{n} f^{\prime}(x) d x=\frac{1}{n+1}(f(x))^{n+1}+C, n \neq-1\) c. \(\int \sin 2 x \, d x=2 \int \sin x \, d x\) d. \(\int\left(x^{2}+1\right)^{9} d x=\frac{\left(x^{2}+1\right)^{10}}{10}+C\) e. \(\int_{a}^{b} f^{\prime}(x) f^{\prime \prime}(x) d x=f^{\prime}(b)-f^{\prime}(a)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.