Chapter 5: Problem 77
The population of a culture of bacteria has a growth rate given by \(p^{\prime}(t)=\frac{200}{(t+1)^{r}}\) bacteria per hour, for \(t \geq 0,\) where \(r > 1\) is a real number. In Chapter 6 it is shown that the increase in the population over the time interval \([0, t]\) is given by \(\int_{0}^{t} p^{\prime}(s) d s\). (Note that the growth rate decreases in time, reflecting competition for space and food.) a. Using the population model with \(r=2,\) what is the increase in the population over the time interval \(0 \leq t \leq 4 ?\) b. Using the population model with \(r=3,\) what is the increase in the population over the time interval \(0 \leq t \leq 6 ?\) c. Let \(\Delta P\) be the increase in the population over a fixed time interval \([0, T] .\) For fixed \(T,\) does \(\Delta P\) increase or decrease with the parameter \(r ?\) Explain. d. A lab technician measures an increase in the population of 350 bacteria over the 10 -hr period [0,10] . Estimate the value of \(r\) that best fits this data point. e. Looking ahead: Use the population model in part (b) to find the increase in population over the time interval \([0, T],\) for any \(T > 0 .\) If the culture is allowed to grow indefinitely \((T \rightarrow \infty)\) does the bacteria population increase without bound? Or does it approach a finite limit?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.