Chapter 3: Problem 93
Alternative proof of the Power Rule The Binomial Theorem states that for any positive integer \(n\) $$\begin{aligned} (a+b)^{n}=& a^{n}+n a^{n-1} b+\frac{n(n-1)}{2 \cdot 1} a^{n-2} b^{2} \\ &+\frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1} a^{n-3} b^{3}+\cdots+n a b^{n-1}+b^{n} \end{aligned}$$ Use this formula and the definition \(f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\) to show that \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1},\) for any positive integer \(n\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.