Chapter 3: Problem 84
Earth's atmospheric pressure decreases with altitude from a sea level pressure of 1000 millibars (a unit of pressure used by meteorologists). Letting \(z\) be the height above Earth's surface (sea level) in kilometers, the atmospheric pressure is modeled by \(p(z)=1000 e^{-z / 10}\) a. Compute the pressure at the summit of Mt. Everest, which has an elevation of roughly \(10 \mathrm{km} .\) Compare the pressure on Mt. Everest to the pressure at sea level. b. Compute the average change in pressure in the first \(5 \mathrm{km}\) above Earth's surface. c. Compute the rate of change of the pressure at an elevation of \(5 \mathrm{km}\) d. Does \(p^{\prime}(z)\) increase or decrease with \(z ?\) Explain. e. What is the meaning of \(\lim _{z \rightarrow \infty} p(z)=0 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.