Chapter 3: Problem 83
A \(\$ 200\) investment in a savings account grows according to \(A(t)=200 e^{0.0398 t}\), for \(t \geq 0,\) where \(t\) is measured in years. a. Find the balance of the account after 10 years. b. How fast is the account growing (in dollars/year) at \(t=10 ?\) c. Use your answers to parts (a) and (b) to write the equation of the line tangent to the curve \(A=200 e^{0.0398 t}\) at the point \((10, A(10))\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.