Chapter 3: Problem 37
Find the derivative of the following functions. $$y=x \cos x \sin x$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 37
Find the derivative of the following functions. $$y=x \cos x \sin x$$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freea. Determine an equation of the tangent line and the normal line at the given point \(\left(x_{0}, y_{0}\right)\) on the following curves. (See instructions for Exercises 73-78. b. Graph the tangent and normal lines on the given graph. \(\left(x^{2}+y^{2}\right)^{2}=\frac{25}{3}\left(x^{2}-y^{2}\right); \left(x_{0}, y_{0}\right)=(2,-1)\) (lemniscate of Bernoulli) (Graph cant copy)
Find \(d y / d x,\) where \(\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+x\right)=8 x y^{2}.\)
Complete the following steps. a. Find equations of all lines tangent to the curve at the given value of \(x.\) b. Graph the tangent lines on the given graph. $$x+y^{2}-y=1 ; x=1$$ (Graph cant copy)
Let \(f(x)=x e^{2 x}\) a. Find the values of \(x\) for which the slope of the curve \(y=f(x)\) is 0 b. Explain the meaning of your answer to part (a) in terms of the graph of \(f\)
Vibrations of a spring Suppose an object of mass \(m\) is attached to the end of a spring hanging from the ceiling. The mass is at its equilibrium position \(y=0\) when the mass hangs at rest. Suppose you push the mass to a position \(y_{0}\) units above its equilibrium position and release it. As the mass oscillates up and down (neglecting any friction in the system , the position y of the mass after t seconds is $$y=y_{0} \cos (t \sqrt{\frac{k}{m}})(4)$$ where \(k>0\) is a constant measuring the stiffness of the spring (the larger the value of \(k\), the stiffer the spring) and \(y\) is positive in the upward direction. A mechanical oscillator (such as a mass on a spring or a pendulum) subject to frictional forces satisfies the equation (called a differential equation) $$y^{\prime \prime}(t)+2 y^{\prime}(t)+5 y(t)=0$$ where \(y\) is the displacement of the oscillator from its equilibrium position. Verify by substitution that the function \(y(t)=e^{-t}(\sin 2 t-2 \cos 2 t)\) satisfies this equation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.