Chapter 3: Problem 115
Let \(f\) and \(g\) be differentiable functions with \(h(x)=f(g(x)) .\) For a given constant \(a,\) let \(u=g(a)\) and \(v=g(x),\) and define $$H(v)=\left\\{\begin{array}{ll} \frac{f(v)-f(u)}{v-u}-f^{\prime}(u) & \text { if } v \neq u \\ 0 & \text { if } v=u \end{array}\right.$$ a. Show that \(\lim _{y \rightarrow u} H(v)=0\) b. For any value of \(u,\) show that $$f(v)-f(u)=\left(H(v)+f^{\prime}(u)\right)(v-u)$$ c. Show that $$h^{\prime}(a)=\lim _{x \rightarrow a}\left(\left(H(g(x))+f^{\prime}(g(a))\right) \cdot \frac{g(x)-g(a)}{x-a}\right)$$ d. Show that \(h^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.