Chapter 3: Problem 103
\- Tangency question It is easily verified that the graphs of \(y=1.1^{x}\) and \(y=x\) have two points of intersection, and the graphs of \(y=2^{x}\) and \(y=x\) have no point of intersection. It follows that for some real number \(1.1 < p < 2,\) the graphs of \(y=p^{x}\) and \(y=x\) have exactly one point of intersection. Using analytical and/or graphical methods, determine \(p\) and the coordinates of the single point of intersection.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.