Chapter 2: Problem 56
The relationship between one-sided and two-sided limits Prove the following statements to establish the fact that \(\lim f(x)=L\) if and only if \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L . \quad x \rightarrow a^{2}\) a. If \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L,\) then \(\lim _{x \rightarrow a} f(x)=L\) b. If \(\lim _{x \rightarrow a} f(x)=L,\) then \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.