Chapter 17: Problem 67
Gravitational potential The gravitational force between two point masses \(M\) and \(m\) is $$\mathbf{F}=G M m \frac{\mathbf{r}}{|\mathbf{r}|^{3}}=G M m \frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$$ where \(G\) is the gravitational constant. a. Verify that this force field is conservative on any region excluding the origin. b. Find a potential function \(\varphi\) for this force field such that \(\mathbf{F}=-\nabla \varphi\). c. Suppose the object with mass \(m\) is moved from a point \(A\) to a point \(B\), where \(A\) is a distance \(r_{1}\) from \(M,\) and \(B\) is a distance \(r_{2}\) from \(M .\) Show that the work done in moving the object is \(G M m\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)\). d. Does the work depend on the path between \(A\) and \(B ?\) Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.