Chapter 17: Problem 66
Conservation of energy Suppose an object with mass \(m\) moves in a region \(R\) in a conservative force field given by \(\mathbf{F}=-\nabla \varphi,\) where \(\varphi\) is a potential function in a region \(R .\) The motion of the object is governed by Newton's Second Law of Motion, \(\mathbf{F}=m \mathbf{a},\) where a is the acceleration. Suppose the object moves from point \(A\) to point \(B\) in \(R\) a. Show that the equation of motion is \(m \frac{d \mathbf{v}}{d t}=-\nabla \varphi\) b. Show that \(\frac{d \mathbf{v}}{d t} \cdot \mathbf{v}=\frac{1}{2} \frac{d}{d t}(\mathbf{v} \cdot \mathbf{v})\) c. Take the dot product of both sides of the equation in part (a) with \(\mathbf{v}(t)=\mathbf{r}^{\prime}(t)\) and integrate along a curve between \(A\) and B. Use part (b) and the fact that \(\mathbf{F}\) is conservative to show that the total energy (kinetic plus potential) \(\frac{1}{2} m|\mathbf{v}|^{2}+\varphi\) is the same at \(A\) and \(B\). Conclude that because \(A\) and \(B\) are arbitrary, energy is conserved in \(R\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.