Chapter 17: Problem 63
One of Maxwell's equations for electromagnetic waves is \(\nabla \times \mathbf{B}=C \frac{\partial \mathbf{E}}{\partial t},\) where \(\mathbf{E}\) is the electric field, \(\mathbf{B}\) is the magnetic field, and \(C\) is a constant. a. Show that the fields \(\mathbf{E}(z, t)=A \sin (k z-\omega t) \mathbf{i}\) and \(\mathbf{B}(z, t)=A \sin (k z-\omega t) \mathbf{j}\) satisfy the equation for constants \(A, k,\) and \(\omega,\) provided \(\omega=k / C\). b. Make a rough sketch showing the directions of \(\mathbf{E}\) and \(\mathbf{B}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.