Chapter 17: Problem 48
Integration by parts (Gauss' Formula) Recall the Product Rule of Theorem \(17.13: \nabla \cdot(u \mathbf{F})=\nabla u \cdot \mathbf{F}+u(\nabla \cdot \mathbf{F})\) a. Integrate both sides of this identity over a solid region \(D\) with a closed boundary \(S\), and use the Divergence Theorem to prove an integration by parts rule: $$\iiint_{D} u(\nabla \cdot \mathbf{F}) d V=\iint_{S} u \mathbf{F} \cdot \mathbf{n} d S-\iiint_{D} \nabla u \cdot \mathbf{F} d V$$ b. Explain the correspondence between this rule and the integration by parts rule for single-variable functions. c. Use integration by parts to evaluate \(\iiint_{D}\left(x^{2} y+y^{2} z+z^{2} x\right) d V\) where \(D\) is the cube in the first octant cut by the planes \(x=1\) \(y=1,\) and \(z=1\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.