Chapter 17: Problem 44
Area of a region in a plane Let \(R\) be a region in a plane that has a unit normal vector \(\mathbf{n}=\langle a, b, c\rangle\) and boundary \(C .\) Let \(\mathbf{F}=\langle b z, c x, a y\rangle\). a. Show that \(\nabla \times \mathbf{F}=\mathbf{n}\) b. Use Stokes' Theorem to show that $$\text { area of } R=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$$ c. Consider the curve \(C\) given by \(\mathbf{r}=\langle 5 \sin t, 13 \cos t, 12 \sin t\rangle\) for \(0 \leq t \leq 2 \pi .\) Prove that \(C\) lies in a plane by showing that \(\mathbf{r} \times \mathbf{r}^{\prime}\) is constant for all \(t\) d. Use part (b) to find the area of the region enclosed by \(C\) in part (c). (Hint: Find the unit normal vector that is consistent with the orientation of \(C .\) )
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.