Chapter 17: Problem 3
Explain the meaning of the Divergence Theorem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 17: Problem 3
Explain the meaning of the Divergence Theorem.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeAlternative construction of potential functions Use the procedure in Exercise 71 to construct potential functions for the following fields. $$\quad \mathbf{F}=\langle-y,-x\rangle$$
Consider the rotational velocity field \(\mathbf{v}=\mathbf{a} \times \mathbf{r},\) where \(\mathbf{a}\) is a nonzero constant vector and \(\mathbf{r}=\langle x, y, z\rangle .\) Use the fact that an object moving in a circular path of radius \(R\) with speed \(|\mathbf{v}|\) has an angular speed of \(\omega=|\mathbf{v}| / R\). a. Sketch a position vector \(\mathbf{a},\) which is the axis of rotation for the vector field, and a position vector \(\mathbf{r}\) of a point \(P\) in \(\mathbb{R}^{3}\). Let \(\theta\) be the angle between the two vectors. Show that the perpendicular distance from \(P\) to the axis of rotation is \(R=|\mathbf{r}| \sin \theta\). b. Show that the speed of a particle in the velocity field is \(|\mathbf{a} \times \mathbf{r}|\) and that the angular speed of the object is \(|\mathbf{a}|\). c. Conclude that \(\omega=\frac{1}{2}|\nabla \times \mathbf{v}|\).
A scalar-valued function \(\varphi\) is harmonic on a region \(D\) if \(\nabla^{2} \varphi=\nabla \cdot \nabla \varphi=0\) at all points of \(D\). Show that if \(\varphi\) is harmonic on a region \(D\) enclosed by a surface \(S\) then \(\iint_{S} \nabla \varphi \cdot \mathbf{n} d S=0\)
The rotation of a threedimensional velocity field \(\mathbf{V}=\langle u, v, w\rangle\) is measured by the vorticity \(\omega=\nabla \times \mathbf{V} .\) If \(\omega=\mathbf{0}\) at all points in the domain, the flow is irrotational. a. Which of the following velocity fields is irrotational: \(\mathbf{V}=\langle 2,-3 y, 5 z\rangle\) or \(\mathbf{V}=\langle y, x-z,-y\rangle ?\) b. Recall that for a two-dimensional source-free flow \(\mathbf{V}=\langle u, v, 0\rangle,\) a stream function \(\psi(x, y)\) may be defined such that \(u=\psi_{y}\) and \(v=-\psi_{x} .\) For such a two-dimensional flow, let \(\zeta=\mathbf{k} \cdot \nabla \times \mathbf{V}\) be the \(\mathbf{k}\) -component of the vorticity. Show that \(\nabla^{2} \psi=\nabla \cdot \nabla \psi=-\zeta\) c. Consider the stream function \(\psi(x, y)=\sin x \sin y\) on the square region \(R=\\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \pi\\} .\) Find the velocity components \(u\) and \(v\); then sketch the velocity field. d. For the stream function in part (c), find the vorticity function \(\zeta\) as defined in part (b). Plot several level curves of the vorticity function. Where on \(R\) is it a maximum? A minimum?
Zero circulation fields. Consider the vector field \(\mathbf{F}=\langle a x+b y, c x+d y\rangle .\) Show that \(\mathbf{F}\) has zero circulation on any oriented circle centered at the origin, for any \(a, b, c,\) and \(d,\) provided \(b=c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.