Chapter 15: Problem 98
In the advanced subject of complex variables, a function typically has the form \(f(x, y)=u(x, y)+i v(x, y),\) where \(u\) and \(v\) are real-valued functions and \(i=\sqrt{-1}\) is the imaginary unit. A function \(f=u+i v\) is said to be analytic (analogous to differentiable) if it satisfies the Cauchy-Riemann equations: \(u_{x}=v_{y}\) and \(u_{y}=-v_{x}\). a. Show that \(f(x, y)=\left(x^{2}-y^{2}\right)+i(2 x y)\) is analytic. b. Show that \(f(x, y)=x\left(x^{2}-3 y^{2}\right)+i y\left(3 x^{2}-y^{2}\right)\) is analytic. c. Show that if \(f=u+i v\) is analytic, then \(u_{x x}+u_{y y}=0\) and \(v_{x x}+v_{y y}=0 .\) Assume \(u\) and \(v\) satisfy the conditions in Theorem 15.4
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.