Chapter 15: Problem 82
Potential functions Potential functions arise frequently in physics and engineering. A potential function has the property that a field of interest (for example, an electric field, a gravitational field, or a velocity field) is the gradient of the potential (or sometimes the negative of the gradient of the potential). (Potential functions are considered in depth in Chapter \(17 .)\) The gravitational potential associated with two objects of mass \(M\) and \(m\) is \(\varphi=-G M m / r,\) where \(G\) is the gravitational constant. If one of the objects is at the origin and the other object is at \(P(x, y, z),\) then \(r^{2}=x^{2}+y^{2}+z^{2}\) is the square of the distance between the objects. The gravitational field at \(P\) is given by \(\mathbf{F}=-\nabla \varphi,\) where \(\nabla \varphi\) is the gradient in three dimensions. Show that the force has a magnitude \(|\mathbf{F}|=G M m / r^{2}\) Explain why this relationship is called an inverse square law.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.