Chapter 15: Problem 65
Check assumptions Consider the function \(f(x, y)=x y+x+y+100\) subject to the constraint \(x y=4\) a. Use the method of Lagrange multipliers to write a system of three equations with three variables \(x, y,\) and \(\lambda\) b. Solve the system in part (a) to verify that \((x, y)=(-2,-2)\) and \((x, y)=(2,2)\) are solutions. c. Let the curve \(C_{1}\) be the branch of the constraint curve corresponding to \(x>0 .\) Calculate \(f(2,2)\) and determine whether this value is an absolute maximum or minimum value of \(f\) over \(C_{1} \cdot(\text {Hint}: \text { Let } h_{1}(x), \text { for } x>0, \text { equal the values of } f\) over the \right. curve \(C_{1}\) and determine whether \(h_{1}\) attains an absolute maximum or minimum value at \(x=2 .\) ) d. Let the curve \(C_{2}\) be the branch of the constraint curve corresponding to \(x<0 .\) Calculate \(f(-2,-2)\) and determine whether this value is an absolute maximum or minimum value of \(f\) over \(C_{2} .\) (Hint: Let \(h_{2}(x),\) for \(x<0,\) equal the values of \(f\) over the curve \(C_{2}\) and determine whether \(h_{2}\) attains an absolute maximum or minimum value at \(x=-2 .\) ) e. Show that the method of Lagrange multipliers fails to find the absolute maximum and minimum values of \(f\) over the constraint curve \(x y=4 .\) Reconcile your explanation with the method of Lagrange multipliers.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.