Chapter 15: Problem 60
Geometric and arithmetic means Given positive numbers \(x_{1}, \ldots, x_{n},\) prove that the geometric mean \(\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}\) is no greater than the arithmetic mean \(\frac{x_{1}+\cdots+x_{n}}{n}\) in the following cases. a. Find the maximum value of \(x y z,\) subject to \(x+y+z=k\) where \(k\) is a positive real number and \(x>0, y>0,\) and Use the result to prove that $$(x y z)^{1 / 3} \leq \frac{x+y+z}{3}$$ b. Generalize part (a) and show that$$\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{x_{1}+\cdots+x_{n}}{n$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.