Chapter 15: Problem 52
Travel cost The cost of a trip that is \(L\) miles long, driving a car that gets \(m\) miles per gallon, with gas costs of \(\$ p /\) gal is \(C=L p / m\) dollars. Suppose you plan a trip of \(L=1500 \mathrm{mi}\) in a car that gets \(m=32 \mathrm{mi} / \mathrm{gal},\) with gas costs of \(p=\$ 3.80 / \mathrm{gal}\) a. Explain how the cost function is derived. b. Compute the partial derivatives \(C_{L}, C_{m^{\prime}}\) and \(C_{p^{\prime}}\). Explain the meaning of the signs of the derivatives in the context of this problem. c. Estimate the change in the total cost of the trip if \(L\) changes from \(L=1500\) to \(L=1520, m\) changes from \(m=32\) to \(m=31,\) and \(p\) changes from \(p=\$ 3.80\) to \(p=\$ 3.85\) d. Is the total cost of the trip (with \(L=1500 \mathrm{mi}, m=32 \mathrm{mi} / \mathrm{gal}\). and \(p=\$ 3.80\) ) more sensitive to a \(1 \%\) change in \(L,\) in \(m,\) or in \(p\) (assuming the other two variables are fixed)? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.