Chapter 15: Problem 49
Suppose you make monthly deposits of \(P\) dollars into an account that earns interest at a monthly rate of \(p \% .\) The balance in the account after \(t\) years is \(B(P, r, t)=P\left(\frac{(1+r)^{12 t}-1}{r}\right),\) where \(r=\frac{p}{100}\) (for example, if the annual interest rate is \(9 \%,\) then \(p=\frac{9}{12}=0.75\) and \(r=0.0075) .\) Let the time of investment be fixed at \(t=20\) years. a. With a target balance of \(\$ 20,000,\) find the set of all points \((P, r)\) that satisfy \(B=20,000 .\) This curve gives all deposits \(P\) and monthly interest rates \(r\) that result in a balance of \(\$ 20,000\) after 20 years. b. Repeat part (a) with \(B=\$ 5000, \$ 10,000, \$ 15,000,\) and \(\$ 25,000,\) and draw the resulting level curves of the balance function.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.