Chapter 12: Problem 103
Suppose the function \(y=h(x)\) is nonnegative and continuous on \([\alpha, \beta],\) which implies that the area bounded by the graph of h and the x-axis on \([\alpha, \beta]\) equals \(\int_{\alpha}^{\beta} h(x) d x\) or \(\int_{\alpha}^{\beta} y d x .\) If the graph of \(y=h(x)\) on \([\alpha, \beta]\) is traced exactly once by the parametric equations \(x=f(t), y=g(t),\) for \(a \leq t \leq b,\) then it follows by substitution that the area bounded by h is $$\begin{array}{l}\int_{\alpha}^{\beta} h(x) d x=\int_{\alpha}^{\beta} y d x=\int_{a}^{b} g(t) f^{\prime}(t) d t \text { if } \alpha=f(a) \text { and } \beta=f(b) \\\\\left(\text { or } \int_{\alpha}^{\beta} h(x) d x=\int_{b}^{a} g(t) f^{\prime}(t) d t \text { if } \alpha=f(b) \text { and } \beta=f(a)\right)\end{array}$$. Find the area under one arch of the cycloid \(x=3(t-\sin t)\) \(y=3(1-\cos t)(\text { see Example } 5)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.