Chapter 8: Problem 99
The expression $$1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+}}}}.$$ where the process continues indefinitely, is called a continued fraction. a. Show that this expression can be built in steps using the recurrence relation \(a_{0}=1, a_{n+1}=1+1 / a_{n},\) for \(n=0,1,2,3, \ldots . .\) Explain why the value of the expression can be interpreted as \(\lim _{n \rightarrow \infty} a_{n},\) provided the limit exists. b. Evaluate the first five terms of the sequence \(\left\\{a_{n}\right\\}\). c. Using computation and/or graphing, estimate the limit of the sequence. d. Assuming the limit exists, use the method of Example 5 to determine the limit exactly. Compare your estimate with \((1+\sqrt{5}) / 2,\) a number known as the golden mean. e. Assuming the limit exists, use the same ideas to determine the value of $$a+\frac{b}{a+\frac{b}{a+\frac{b}{a+\frac{b}{a+}}}}$$ where \(a\) and \(b\) are positive real numbers.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.