Chapter 8: Problem 97
Repeated square roots Consider the expression \(\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}},\) where the process continues indefinitely. a. Show that this expression can be built in steps using the recurrence relation \(a_{0}=1, a_{n+1}=\sqrt{1+a_{n}}\), for \(n=0,1,2,3, \ldots . .\) Explain why the value of the expression can be interpreted as \(\lim _{n \rightarrow \infty} a_{n},\) provided the limit exists. b. Evaluate the first five terms of the sequence \(\left\\{a_{n}\right\\}\) c. Estimate the limit of the sequence. Compare your estimate with \((1+\sqrt{5}) / 2,\) a number known as the golden mean. d. Assuming the limit exists, use the method of Example 5 to determine the limit exactly. e. Repeat the preceding analysis for the expression \(\sqrt{p+\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}},}\) where \(p>0 .\) Make a table showing the approximate value of this expression for various values of \(p .\) Does the expression seem to have a limit for all positive values of \(p ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.