Chapter 8: Problem 88
Consider the number \(0.555555 \ldots,\) which can be viewed as the series \(5 \sum_{k=1}^{\infty} 10^{-k} .\) Evaluate the geometric series to obtain a rational value of \(0.555555 .\) b. Consider the number \(0.54545454 \ldots\), which can be represented by the series \(54 \sum_{k=1}^{\infty} 10^{-2 k} .\) Evaluate the geometric series to obtain a rational value of the number. c. Now generalize parts (a) and (b). Suppose you are given a number with a decimal expansion that repeats in cycles of length \(p,\) say, \(n_{1}, n_{2} \ldots ., n_{p},\) where \(n_{1}, \ldots, n_{p}\) are integers between 0 and \(9 .\) Explain how to use geometric series to obtain a rational form for \(0 . \overline{n_{1}} n_{2} \cdots n_{p}\) d. Try the method of part (c) on the number \(0 . \overline{123456789}=0.123456789123456789 \ldots\) e. Prove that \(0 . \overline{9}=1\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.