Chapter 8: Problem 88
An infinite product \(P=a_{1} a_{2} a_{3} \ldots,\) which is denoted \(\prod_{k=1}^{\infty} a_{k}\) is the limit of the sequence of partial products \(\left\\{a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \ldots\right\\} .\) Assume that \(a_{k}>0\) for all \(k\) a. Show that the infinite product converges (which means its sequence of partial products converges) provided the series \(\sum_{k=1}^{\infty} \ln a_{k}\) converges. b. Consider the infinite product $$P=\prod_{k=2}^{\infty}\left(1-\frac{1}{k^{2}}\right)=\frac{3}{4} \cdot \frac{8}{9} \cdot \frac{15}{16} \cdot \frac{24}{25} \cdots$$ Write out the first few terms of the sequence of partial products, $$P_{n}=\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)$$ (for example, \(P_{2}=\frac{3}{4}, P_{3}=\frac{2}{3}\) ). Write out enough terms to determine the value of \(P=\lim _{n \rightarrow \infty} P_{n}\) c. Use the results of parts (a) and (b) to evaluate the series $$\sum_{k=2}^{\infty} \ln \left(1-\frac{1}{k^{2}}\right)$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.