Chapter 8: Problem 80
Two sine series Determine whether the following series converge. a. \(\sum_{k=1}^{\infty} \sin \frac{1}{k}\) b. \(\sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{1}{k}\)
Chapter 8: Problem 80
Two sine series Determine whether the following series converge. a. \(\sum_{k=1}^{\infty} \sin \frac{1}{k}\) b. \(\sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{1}{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA ball is thrown upward to a height of \(h_{0}\) meters. After each bounce, the ball rebounds to a fraction r of its previous height. Let \(h_{n}\) be the height after the nth bounce and let \(S_{n}\) be the total distance the ball has traveled at the moment of the nth bounce. a. Find the first four terms of the sequence \(\left\\{S_{n}\right\\}\) b. Make a table of 20 terms of the sequence \(\left\\{S_{n}\right\\}\) and determine \(a\) plausible value for the limit of \(\left\\{S_{n}\right\\}\) $$h_{0}=20, r=0.5$$
Consider the sequence \(\left\\{F_{n}\right\\}\) defined by $$F_{n}=\sum_{k=1}^{\infty} \frac{1}{k(k+n)},$$ for \(n=0,1,2, \ldots . .\) When \(n=0,\) the series is a \(p\) -series, and we have \(F_{0}=\pi^{2} / 6\) (Exercises 65 and 66 ). a. Explain why \(\left\\{F_{n}\right\\}\) is a decreasing sequence. b. Plot \(\left\\{F_{n}\right\\},\) for \(n=1,2, \ldots, 20\). c. Based on your experiments, make a conjecture about \(\lim _{n \rightarrow \infty} F_{n}\).
In \(1978,\) in an effort to reduce population growth, China instituted a policy that allows only one child per family. One unintended consequence has been that, because of a cultural bias toward sons, China now has many more young boys than girls. To solve this problem, some people have suggested replacing the one-child policy with a one-son policy: A family may have children until a boy is born. Suppose that the one-son policy were implemented and that natural birth rates remained the same (half boys and half girls). Using geometric series, compare the total number of children under the two policies.
The Fibonacci sequence \(\\{1,1,2,3,5,8,13, \ldots\\}\) is generated by the recurrence relation \(f_{n+1}=f_{n}+f_{n-1},\) for \(n=1,2,3, \ldots,\) where \(f_{0}=1, f_{1}=1\). a. It can be shown that the sequence of ratios of successive terms of the sequence \(\left\\{\frac{f_{n+1}}{f_{n}}\right\\}\) has a limit \(\varphi .\) Divide both sides of the recurrence relation by \(f_{n},\) take the limit as \(n \rightarrow \infty,\) and show that \(\varphi=\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\frac{1+\sqrt{5}}{2} \approx 1.618\). b. Show that \(\lim _{n \rightarrow \infty} \frac{f_{n-1}}{f_{n+1}}=1-\frac{1}{\varphi} \approx 0.382\). c. Now consider the harmonic series and group terms as follows: $$\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\left(\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)$$ $$+\left(\frac{1}{9}+\cdots+\frac{1}{13}\right)+\cdots$$ With the Fibonacci sequence in mind, show that $$\sum_{k=1}^{\infty} \frac{1}{k} \geq 1+\frac{1}{2}+\frac{1}{3}+\frac{2}{5}+\frac{3}{8}+\frac{5}{13}+\cdots=1+\sum_{k=1}^{\infty} \frac{f_{k-1}}{f_{k+1}}.$$ d. Use part (b) to conclude that the harmonic series diverges. (Source: The College Mathematics Journal, 43, May 2012)
Consider the sequence \(\left\\{x_{n}\right\\}\) defined for \(n=1,2,3, \ldots\) by $$x_{n}=\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{2 n}.$$ a. Write out the terms \(x_{1}, x_{2}, x_{3}\). b. Show that \(\frac{1}{2} \leq x_{n}<1,\) for \(n=1,2,3, \ldots\). c. Show that \(x_{n}\) is the right Riemann sum for \(\int_{1}^{2} \frac{d x}{x}\) using \(n\) subintervals. d. Conclude that \(\lim _{n \rightarrow \infty} x_{n}=\ln 2\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.