Chapter 8: Problem 73
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{c n}{b n+1}=\frac{c}{b}, \text { for real numbers } b > 0 \text { and } c > 0$$
Chapter 8: Problem 73
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{c n}{b n+1}=\frac{c}{b}, \text { for real numbers } b > 0 \text { and } c > 0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{3 n^{2}}{4 n^{2}+1}=\frac{3}{4}$$
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} b^{-n}=0, \text { for } b > 1$$
Evaluate the limit of the following sequences or state that the limit does not exist. $$a_{n}=\frac{4^{n}+5 n !}{n !+2^{n}}$$
A ball is thrown upward to a height of \(h_{0}\) meters. After each bounce, the ball rebounds to a fraction r of its previous height. Let \(h_{n}\) be the height after the nth bounce and let \(S_{n}\) be the total distance the ball has traveled at the moment of the nth bounce. a. Find the first four terms of the sequence \(\left\\{S_{n}\right\\}\) b. Make a table of 20 terms of the sequence \(\left\\{S_{n}\right\\}\) and determine \(a\) plausible value for the limit of \(\left\\{S_{n}\right\\}\) $$h_{0}=20, r=0.75$$
A fishery manager knows that her fish population naturally increases at a rate of \(1.5 \%\) per month. At the end of each month, 120 fish are harvested. Let \(F_{n}\) be the fish population after the \(n\) th month, where \(F_{0}=4000\) fish. Assume that this process continues indefinitely. Use infinite series to find the longterm (steady-state) population of the fish.
What do you think about this solution?
We value your feedback to improve our textbook solutions.