Chapter 8: Problem 70
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$$
Chapter 8: Problem 70
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFor a positive real number \(p,\) the tower of exponents \(p^{p^{p}}\) continues indefinitely and the expression is ambiguous. The tower could be built from the top as the limit of the sequence \(\left\\{p^{p},\left(p^{p}\right)^{p},\left(\left(p^{p}\right)^{p}\right)^{p}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=a_{n}^{p}(\text { building from the top })\) where \(a_{1}=p^{p} .\) The tower could also be built from the bottom as the limit of the sequence \(\left\\{p^{p}, p^{\left(p^{p}\right)}, p^{\left(p^{(i)}\right)}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=p^{a_{n}}(\text { building from the bottom })\) where again \(a_{1}=p^{p}\). a. Estimate the value of the tower with \(p=0.5\) by building from the top. That is, use tables to estimate the limit of the sequence defined recursively by (1) with \(p=0.5 .\) Estimate the maximum value of \(p > 0\) for which the sequence has a limit. b. Estimate the value of the tower with \(p=1.2\) by building from the bottom. That is, use tables to estimate the limit of the sequence defined recursively by (2) with \(p=1.2 .\) Estimate the maximum value of \(p > 1\) for which the sequence has a limit.
$$\text {Evaluate each series or state that it diverges.}$$ $$\sum_{k=1}^{\infty} \frac{\pi^{k}}{e^{k+1}}$$
A tank is filled with 100 L of a \(40 \%\) alcohol solution (by volume). You repeatedly perform the following operation: Remove 2 L of the solution from the tank and replace them with 2 L of \(10 \%\) alcohol solution. a. Let \(C_{n}\) be the concentration of the solution in the tank after the \(n\) th replacement, where \(C_{0}=40 \% .\) Write the first five terms of the sequence \(\left\\{C_{n}\right\\}\). b. After how many replacements does the alcohol concentration reach \(15 \% ?\). c. Determine the limiting (steady-state) concentration of the solution that is approached after many replacements.
The fractal called the snowflake island (or Koch island ) is constructed as follows: Let \(I_{0}\) be an equilateral triangle with sides of length \(1 .\) The figure \(I_{1}\) is obtained by replacing the middle third of each side of \(I_{0}\) with a new outward equilateral triangle with sides of length \(1 / 3\) (see figure). The process is repeated where \(I_{n+1}\) is obtained by replacing the middle third of each side of \(I_{n}\) with a new outward equilateral triangle with sides of length \(1 / 3^{n+1}\). The limiting figure as \(n \rightarrow \infty\) is called the snowflake island. a. Let \(L_{n}\) be the perimeter of \(I_{n} .\) Show that \(\lim _{n \rightarrow \infty} L_{n}=\infty\) b. Let \(A_{n}\) be the area of \(I_{n} .\) Find \(\lim _{n \rightarrow \infty} A_{n} .\) It exists!
It can be proved that if a series converges absolutely, then its terms may be summed in any order without changing the value of the series. However, if a series converges conditionally, then the value of the series depends on the order of summation. For example, the (conditionally convergent) alternating harmonic series has the value $$ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots=\ln 2 $$ Show that by rearranging the terms (so the sign pattern is \(++-\) ), $$ 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.