Chapter 8: Problem 70
Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{1}{(\ln k)^{p}}$$
Chapter 8: Problem 70
Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{1}{(\ln k)^{p}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the limit of the following sequences or state that the limit does not exist. $$a_{n}=\frac{6^{n}+3^{n}}{6^{n}+n^{100}}$$
A fallacy Explain the fallacy in the following argument. Let \(x=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots\) and \(y=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots \cdot\) It follows that \(2 y=x+y\) which implies that \(x=y .\) On the other hand, $$ x-y=\underbrace{\left(1-\frac{1}{2}\right)}_{>0}+\underbrace{\left(\frac{1}{3}-\frac{1}{4}\right)}_{>0}+\underbrace{\left(\frac{1}{5}-\frac{1}{6}\right)}_{>0}+\cdots>0 $$ is a sum of positive terms, so \(x>y .\) Therefore, we have shown that \(x=y\) and \(x>y\)
Use Theorem 8.6 to find the limit of the following sequences or state that they diverge. $$\left\\{\frac{n^{1000}}{2^{n}}\right\\}$$
$$\text {Evaluate each series or state that it diverges.}$$ $$\sum_{k=1}^{\infty}\left(\sin ^{-1}(1 / k)-\sin ^{-1}(1 /(k+1))\right)$$
After many nights of observation, you notice that if you oversleep one night, you tend to undersleep the following night, and vice versa. This pattern of compensation is described by the relationship $$x_{n+1}=\frac{1}{2}\left(x_{n}+x_{n-1}\right), \quad \text { for } n=1,2,3, \ldots.$$ where \(x_{n}\) is the number of hours of sleep you get on the \(n\) th night and \(x_{0}=7\) and \(x_{1}=6\) are the number of hours of sleep on the first two nights, respectively. a. Write out the first six terms of the sequence \(\left\\{x_{n}\right\\}\) and confirm that the terms alternately increase and decrease. b. Show that the explicit formula $$x_{n}=\frac{19}{3}+\frac{2}{3}\left(-\frac{1}{2}\right)^{n}, \text { for } n \geq 0.$$ generates the terms of the sequence in part (a). c. What is the limit of the sequence?
What do you think about this solution?
We value your feedback to improve our textbook solutions.