Chapter 8: Problem 69
Consider the sequence \(\left\\{x_{n}\right\\}\) defined for \(n=1,2,3, \ldots\) by $$x_{n}=\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{2 n}.$$ a. Write out the terms \(x_{1}, x_{2}, x_{3}\). b. Show that \(\frac{1}{2} \leq x_{n}<1,\) for \(n=1,2,3, \ldots\). c. Show that \(x_{n}\) is the right Riemann sum for \(\int_{1}^{2} \frac{d x}{x}\) using \(n\) subintervals. d. Conclude that \(\lim _{n \rightarrow \infty} x_{n}=\ln 2\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.