Chapter 8: Problem 66
Consider the alternating series $$ \sum_{k=1}^{\infty}(-1)^{k+1} a_{k}, \text { where } a_{k}=\left\\{\begin{array}{cl} \frac{4}{k+1}, & \text { if } k \text { is odd } \\ \frac{2}{k}, & \text { if } k \text { is even } \end{array}\right. $$ a. Write out the first ten terms of the series, group them in pairs, and show that the even partial sums of the series form the (divergent) harmonic series. b. Show that \(\lim _{k \rightarrow \infty} a_{k}=0\) c. Explain why the series diverges even though the terms of the series approach zero.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.