Chapter 8: Problem 64
The prime numbers are those positive integers that are divisible by only 1 and themselves (for example, 2,3,5,7, 11,13, \(\ldots\) ). A celebrated theorem states that the sequence of prime numbers \(\left\\{p_{k}\right\\}\) satisfies \(\lim _{k \rightarrow \infty} p_{k} /(k \ln k)=1 .\) Show that \(\sum_{k=2}^{\infty} \frac{1}{k \ln k}\) diverges, which implies that the series \(\sum_{k=1}^{\infty} \frac{1}{p_{k}}\) diverges.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.