Chapter 8: Problem 64
Suppose an alternating series \(\sum(-1)^{k} a_{k}\) with terms that are non increasing in magnitude, converges to \(S\) and the sum of the first \(n\) terms of the series is \(S_{n} .\) Suppose also that the difference between the magnitudes of consecutive terms decreases with \(k .\) It can be shown that for \(n \geq 1\) \(\left|S-\left(S_{n}+\frac{(-1)^{n+1} a_{n+1}}{2}\right)\right| \leq \frac{1}{2}\left|a_{n+1}-a_{n+2}\right|\) a. Interpret this inequality and explain why it is a better approximation to \(S\) than \(S_{n}\) b. For the following series, determine how many terms of the series are needed to approximate its exact value with an error less than \(10^{-6}\) using both \(S_{n}\) and the method explained in part (a). (i) \(\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}\) (ii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}\) (iii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.