Chapter 8: Problem 63
It can be proved that if a series converges absolutely, then its terms may be summed in any order without changing the value of the series. However, if a series converges conditionally, then the value of the series depends on the order of summation. For example, the (conditionally convergent) alternating harmonic series has the value $$ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots=\ln 2 $$ Show that by rearranging the terms (so the sign pattern is \(++-\) ), $$ 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.