Chapter 8: Problem 61
In Section \(8.3,\) we established that the geometric series \(\sum r^{k}\) converges provided \(|r| < 1\). Notice that if \(-1 < r<0,\) the geometric series is also an alternating series. Use the Alternating Series Test to show that for \(-1 < r <0\), the series \(\sum r^{k}\) converges.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.