Chapter 8: Problem 5
Define infinite series and give an example.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 8: Problem 5
Define infinite series and give an example.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the limit of the sequence or state that the sequence diverges. $$a_{n+1}=4 a_{n}\left(1-a_{n}\right) ; a_{0}=0.5$$
The famous Fibonacci sequence was proposed by Leonardo Pisano, also known as Fibonacci, in about \(\mathrm{A.D.} 1200\) as a model for the growth of rabbit populations. It is given by the recurrence relation \(f_{n+1}=f_{n}+f_{n-1},\) for \(n=1,2,3, \ldots,\) where \(f_{0}=1, f_{1}=1 .\) Each term of the sequence is the sum of its two predecessors. a. Write out the first ten terms of the sequence. b. Is the sequence bounded? c. Estimate or determine \(\varphi=\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}},\) the ratio of the successive terms of the sequence. Provide evidence that \(\varphi=(1+\sqrt{5}) / 2,\) a number known as the golden mean. d. Use induction to verify the remarkable result that $$f_{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n}-(-1)^{n} \varphi^{-n}\right).$$
A heifer weighing 200 lb today gains 5 lb per day with a food cost of \(45 \mathrm{c} /\) day. The price for heifers is \(65 \mathrm{q} / \mathrm{lb}\) today but is falling \(1 \% /\) day. a. Let \(h_{n}\) be the profit in selling the heifer on the \(n\) th day, where \(h_{0}=(200 \mathrm{lb}) \cdot(\$ 0.65 / \mathrm{lb})=\$ 130 .\) Write out the first 10 terms of the sequence \(\left\\{h_{n}\right\\}\). b. How many days after today should the heifer be sold to maximize the profit?
Suppose a function \(f\) is defined by the geometric series \(f(x)=\sum_{k=0}^{\infty} x^{2 k}\) a. Evaluate \(f(0), f(0.2), f(0.5), f(1),\) and \(f(1.5),\) if possible. b. What is the domain of \(f ?\)
Pick two positive numbers \(a_{0}\) and \(b_{0}\) with \(a_{0}>b_{0},\) and write out the first few terms of the two sequences \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}:\) $$a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad \text { for } n=0,1,2 \dots$$ (Recall that the arithmetic mean \(A=(p+q) / 2\) and the geometric mean \(G=\sqrt{p q}\) of two positive numbers \(p\) and \(q\) satisfy \(A \geq G.)\) a. Show that \(a_{n} > b_{n}\) for all \(n\). b. Show that \(\left\\{a_{n}\right\\}\) is a decreasing sequence and \(\left\\{b_{n}\right\\}\) is an increasing sequence. c. Conclude that \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}\) converge. d. Show that \(a_{n+1}-b_{n+1}<\left(a_{n}-b_{n}\right) / 2\) and conclude that \(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} .\) The common value of these limits is called the arithmetic-geometric mean of \(a_{0}\) and \(b_{0},\) denoted \(\mathrm{AGM}\left(a_{0}, b_{0}\right)\). e. Estimate AGM(12,20). Estimate Gauss' constant \(1 / \mathrm{AGM}(1, \sqrt{2})\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.