Chapter 8: Problem 4
For what values of \(p\) does the series \(\sum_{k=1}^{\infty} \frac{1}{k^{p}}\) converge? For what values of \(p\) does it diverge?
Chapter 8: Problem 4
For what values of \(p\) does the series \(\sum_{k=1}^{\infty} \frac{1}{k^{p}}\) converge? For what values of \(p\) does it diverge?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Greek philosopher Zeno of Elea (who lived about 450 B.c.) invented many paradoxes, the most famous of which tells of a race between the swift warrior Achilles and a tortoise. Zeno argued The slower when running will never be overtaken by the quicker: for that which is pursuing must first reach the point from which that which is fleeing started, so that the slower must necessarily always be some distance ahead. In other words, by giving the tortoise a head start, Achilles will never overtake the tortoise because every time Achilles reaches the point where the tortoise was, the tortoise has moved ahead. Resolve this paradox by assuming that Achilles gives the tortoise a 1 -mi head start and runs \(5 \mathrm{mi} / \mathrm{hr}\) to the tortoise's \(1 \mathrm{mi} / \mathrm{hr}\). How far does Achilles run before he overtakes the tortoise, and how long does it take?
A fishery manager knows that her fish population naturally increases at a rate of \(1.5 \%\) per month, while 80 fish are harvested each month. Let \(F_{n}\) be the fish population after the \(n\) th month, where \(F_{0}=4000\) fish. a. Write out the first five terms of the sequence \(\left\\{F_{n}\right\\}\). b. Find a recurrence relation that generates the sequence \(\left\\{F_{n}\right\\}\). c. Does the fish population decrease or increase in the long run? d. Determine whether the fish population decreases or increases in the long run if the initial population is 5500 fish. e. Determine the initial fish population \(F_{0}\) below which the population decreases.
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the limit of the sequence or state that the sequence diverges. $$a_{n+1}=2 a_{n}\left(1-a_{n}\right) ; a_{0}=0.3$$
In Section \(8.3,\) we established that the geometric series \(\sum r^{k}\) converges provided \(|r| < 1\). Notice that if \(-1 < r<0,\) the geometric series is also an alternating series. Use the Alternating Series Test to show that for \(-1 < r <0\), the series \(\sum r^{k}\) converges.
Repeated square roots Consider the expression \(\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}},\) where the process continues indefinitely. a. Show that this expression can be built in steps using the recurrence relation \(a_{0}=1, a_{n+1}=\sqrt{1+a_{n}}\), for \(n=0,1,2,3, \ldots . .\) Explain why the value of the expression can be interpreted as \(\lim _{n \rightarrow \infty} a_{n},\) provided the limit exists. b. Evaluate the first five terms of the sequence \(\left\\{a_{n}\right\\}\) c. Estimate the limit of the sequence. Compare your estimate with \((1+\sqrt{5}) / 2,\) a number known as the golden mean. d. Assuming the limit exists, use the method of Example 5 to determine the limit exactly. e. Repeat the preceding analysis for the expression \(\sqrt{p+\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}},}\) where \(p>0 .\) Make a table showing the approximate value of this expression for various values of \(p .\) Does the expression seem to have a limit for all positive values of \(p ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.