Chapter 8: Problem 3
What is meant by the ratio of a geometric series?
Chapter 8: Problem 3
What is meant by the ratio of a geometric series?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the following exercises, two sequences are given, one of which initially has smaller values, but eventually "overtakes" the other sequence. Find the sequence with the larger growth rate and the value of \(n\) at which it overtakes the other sequence. $$a_{n}=n^{1.001} \text { and } b_{n}=\ln n^{10}, n \geq 1$$
$$\text {Evaluate each series or state that it diverges.}$$ $$\sum_{k=1}^{\infty}\left(\sin ^{-1}(1 / k)-\sin ^{-1}(1 /(k+1))\right)$$
a. Evaluate the series $$ \sum_{k=1}^{\infty} \frac{3^{k}}{\left(3^{k+1}-1\right)\left(3^{k}-1\right)} $$ b. For what values of \(a\) does the series $$ \sum_{k=1}^{\infty} \frac{a^{k}}{\left(a^{k+1}-1\right)\left(a^{k}-1\right)} $$ converge, and in those cases, what is its value?
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty} \frac{3}{10^{k}}$$
A fishery manager knows that her fish population naturally increases at a rate of \(1.5 \%\) per month, while 80 fish are harvested each month. Let \(F_{n}\) be the fish population after the \(n\) th month, where \(F_{0}=4000\) fish. a. Write out the first five terms of the sequence \(\left\\{F_{n}\right\\}\). b. Find a recurrence relation that generates the sequence \(\left\\{F_{n}\right\\}\). c. Does the fish population decrease or increase in the long run? d. Determine whether the fish population decreases or increases in the long run if the initial population is 5500 fish. e. Determine the initial fish population \(F_{0}\) below which the population decreases.
What do you think about this solution?
We value your feedback to improve our textbook solutions.