Chapter 8: Problem 3
Suppose the sequence \(\left\\{a_{n}\right\\}\) is defined by the recurrence relation \(a_{n+1}=n a_{n},\) for \(n=1,2,3, \ldots,\) where \(a_{1}=1 .\) Write out the first five terms of the sequence.
Chapter 8: Problem 3
Suppose the sequence \(\left\\{a_{n}\right\\}\) is defined by the recurrence relation \(a_{n+1}=n a_{n},\) for \(n=1,2,3, \ldots,\) where \(a_{1}=1 .\) Write out the first five terms of the sequence.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse Theorem 8.6 to find the limit of the following sequences or state that they diverge. $$\left\\{\frac{e^{n / 10}}{2^{n}}\right\\}$$
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty} \frac{3}{10^{k}}$$
Determine whether the following statements are true and give an explanation or counterexample. a. \(\sum_{k=1}^{\infty}\left(\frac{\pi}{e}\right)^{-k}\) is a convergent geometric series. b. If \(a\) is a real number and \(\sum_{k=12}^{\infty} a^{k}\) converges, then \(\sum_{k=1}^{\infty} a^{k}\) converges. If the series \(\sum_{k=1}^{\infty} a^{k}\) converges and \(|a|<|b|,\) then the series \(\sum_{k=1}^{\infty} b^{k}\) converges. d. Viewed as a function of \(r,\) the series \(1+r^{2}+r^{3}+\cdots\) takes on all values in the interval \(\left(\frac{1}{2}, \infty\right)\) e. Viewed as a function of \(r,\) the series \(\sum_{k=1}^{\infty} r^{k}\) takes on all values in the interval \(\left(-\frac{1}{2}, \infty\right)\)
An insulated window consists of two parallel panes of glass with a small spacing between them. Suppose that each pane reflects a fraction \(p\) of the incoming light and transmits the remaining light. Considering all reflections of light between the panes, what fraction of the incoming light is ultimately transmitted by the window? Assume the amount of incoming light is 1.
A fallacy Explain the fallacy in the following argument. Let \(x=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots\) and \(y=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots \cdot\) It follows that \(2 y=x+y\) which implies that \(x=y .\) On the other hand, $$ x-y=\underbrace{\left(1-\frac{1}{2}\right)}_{>0}+\underbrace{\left(\frac{1}{3}-\frac{1}{4}\right)}_{>0}+\underbrace{\left(\frac{1}{5}-\frac{1}{6}\right)}_{>0}+\cdots>0 $$ is a sum of positive terms, so \(x>y .\) Therefore, we have shown that \(x=y\) and \(x>y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.