Chapter 8: Problem 3
Can the Integral Test be used to determine whether a series diverges?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 8: Problem 3
Can the Integral Test be used to determine whether a series diverges?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. The Consumer Price Index (the CPI is a measure of the U.S. cost of living) is given a base value of 100 in the year \(1984 .\) Assume the CPI has increased by an average of \(3 \%\) per year since \(1984 .\) Let \(c_{n}\) be the CPI \(n\) years after \(1984,\) where \(c_{0}=100\)
Evaluate the limit of the following sequences or state that the limit does not exist. $$a_{n}=\frac{75^{n-1}}{99^{n}}+\frac{5^{n} \sin n}{8^{n}}$$
Use Theorem 8.6 to find the limit of the following sequences or state that they diverge. $$\left\\{\frac{3^{n}}{n !}\right\\}$$
The Riemann zeta function is the subject of extensive research and is associated with several renowned unsolved problems. It is defined by \(\zeta(x)=\sum_{k=1}^{\infty} \frac{1}{k^{x}} .\) When \(x\) is a real number, the zeta function becomes a \(p\) -series. For even positive integers \(p,\) the value of \(\zeta(p)\) is known exactly. For example, $$\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}, \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}, \ldots$$ Use the estimation techniques described in the text to approximate \(\zeta(3)\) and \(\zeta(5)\) (whose values are not known exactly) with a remainder less than \(10^{-3}\).
In \(1978,\) in an effort to reduce population growth, China instituted a policy that allows only one child per family. One unintended consequence has been that, because of a cultural bias toward sons, China now has many more young boys than girls. To solve this problem, some people have suggested replacing the one-child policy with a one-son policy: A family may have children until a boy is born. Suppose that the one-son policy were implemented and that natural birth rates remained the same (half boys and half girls). Using geometric series, compare the total number of children under the two policies.
What do you think about this solution?
We value your feedback to improve our textbook solutions.