Chapter 8: Problem 2
Is it true that if the terms of a series of positive terms decrease to zero, then the series converges? Explain using an example.
Chapter 8: Problem 2
Is it true that if the terms of a series of positive terms decrease to zero, then the series converges? Explain using an example.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the following exercises, two sequences are given, one of which initially has smaller values, but eventually "overtakes" the other sequence. Find the sequence with the larger growth rate and the value of \(n\) at which it overtakes the other sequence. $$a_{n}=n^{10} \text { and } b_{n}=n^{9} \ln ^{3} n, n \geq 7$$
Use Theorem 8.6 to find the limit of the following sequences or state that they diverge. $$\left\\{\frac{e^{n / 10}}{2^{n}}\right\\}$$
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the limit of the sequence or state that the sequence diverges. $$a_{n+1}=\frac{1}{2} a_{n}+2 ; a_{0}=5$$
Pick two positive numbers \(a_{0}\) and \(b_{0}\) with \(a_{0}>b_{0},\) and write out the first few terms of the two sequences \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}:\) $$a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad \text { for } n=0,1,2 \dots$$ (Recall that the arithmetic mean \(A=(p+q) / 2\) and the geometric mean \(G=\sqrt{p q}\) of two positive numbers \(p\) and \(q\) satisfy \(A \geq G.)\) a. Show that \(a_{n} > b_{n}\) for all \(n\). b. Show that \(\left\\{a_{n}\right\\}\) is a decreasing sequence and \(\left\\{b_{n}\right\\}\) is an increasing sequence. c. Conclude that \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}\) converge. d. Show that \(a_{n+1}-b_{n+1}<\left(a_{n}-b_{n}\right) / 2\) and conclude that \(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} .\) The common value of these limits is called the arithmetic-geometric mean of \(a_{0}\) and \(b_{0},\) denoted \(\mathrm{AGM}\left(a_{0}, b_{0}\right)\). e. Estimate AGM(12,20). Estimate Gauss' constant \(1 / \mathrm{AGM}(1, \sqrt{2})\).
Use Theorem 8.6 to find the limit of the following sequences or state that they diverge. $$\left\\{\frac{n^{10}}{\ln ^{20} n}\right\\}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.