Chapter 8: Problem 2
Explain how the Root Test works.
Chapter 8: Problem 2
Explain how the Root Test works.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven any infinite series \(\sum a_{k}\) let \(N(r)\) be the number of terms of the series that must be summed to guarantee that the remainder is less than \(10^{-r}\) in magnitude, where \(r\) is a positive integer. a. Graph the function \(N(r)\) for the three alternating \(p\) -series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{p}},\) for \(p=1,2,\) and \(3 .\) Compare the three graphs and discuss what they mean about the rates of convergence of the three series. b. Carry out the procedure of part (a) for the series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k !}\) and compare the rates of convergence of all four series.
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. Jack took a \(200-\mathrm{mg}\) dose of a painkiller at midnight. Every hour, \(5 \%\) of the drug is washed out of his bloodstream. Let \(d_{n}\) be the amount of drug in Jack's blood \(n\) hours after the drug was taken, where \(d_{0}=200 \mathrm{mg}\)
$$\text {Evaluate each series or state that it diverges.}$$ $$\sum_{k=1}^{\infty} \frac{(-2)^{k}}{3^{k+1}}$$
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. Radioactive decay A material transmutes \(50 \%\) of its mass to another element every 10 years due to radioactive decay. Let \(M_{n}\) be the mass of the radioactive material at the end of the \(n\) th decade, where the initial mass of the material is \(M_{0}=20 \mathrm{g}\)
Consider the number \(0.555555 \ldots,\) which can be viewed as the series \(5 \sum_{k=1}^{\infty} 10^{-k} .\) Evaluate the geometric series to obtain a rational value of \(0.555555 .\) b. Consider the number \(0.54545454 \ldots\), which can be represented by the series \(54 \sum_{k=1}^{\infty} 10^{-2 k} .\) Evaluate the geometric series to obtain a rational value of the number. c. Now generalize parts (a) and (b). Suppose you are given a number with a decimal expansion that repeats in cycles of length \(p,\) say, \(n_{1}, n_{2} \ldots ., n_{p},\) where \(n_{1}, \ldots, n_{p}\) are integers between 0 and \(9 .\) Explain how to use geometric series to obtain a rational form for \(0 . \overline{n_{1}} n_{2} \cdots n_{p}\) d. Try the method of part (c) on the number \(0 . \overline{123456789}=0.123456789123456789 \ldots\) e. Prove that \(0 . \overline{9}=1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.