Chapter 8: Problem 2
Describe how to apply the Alternating Series Test.
Chapter 8: Problem 2
Describe how to apply the Alternating Series Test.
All the tools & learning materials you need for study success - in one app.
Get started for freeStirling's formula Complete the following steps to find the values of \(p>0\) for which the series \(\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{p^{k} k !}\) converges. a. Use the Ratio Test to show that \(\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{p^{k} k !}\) converges for \(p>2\). b. Use Stirling's formula, \(k !=\sqrt{2 \pi k} k^{k} e^{-k}\) for large \(k,\) to determine whether the series converges when \(p=2\). (Hint: \(1 \cdot 3 \cdot 5 \cdots(2 k-1)=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdots(2 k-1) 2 k}{2 \cdot 4 \cdot 6 \cdots 2 k}\) (See the Guided Project Stirling's formula and \(n\) ? for more on this topic.)
In the following exercises, two sequences are given, one of which initially has smaller values, but eventually "overtakes" the other sequence. Find the sequence with the larger growth rate and the value of \(n\) at which it overtakes the other sequence. $$a_{n}=n^{10} \text { and } b_{n}=n^{9} \ln ^{3} n, n \geq 7$$
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty}(-1)^{k} k$$
Consider the number \(0.555555 \ldots,\) which can be viewed as the series \(5 \sum_{k=1}^{\infty} 10^{-k} .\) Evaluate the geometric series to obtain a rational value of \(0.555555 .\) b. Consider the number \(0.54545454 \ldots\), which can be represented by the series \(54 \sum_{k=1}^{\infty} 10^{-2 k} .\) Evaluate the geometric series to obtain a rational value of the number. c. Now generalize parts (a) and (b). Suppose you are given a number with a decimal expansion that repeats in cycles of length \(p,\) say, \(n_{1}, n_{2} \ldots ., n_{p},\) where \(n_{1}, \ldots, n_{p}\) are integers between 0 and \(9 .\) Explain how to use geometric series to obtain a rational form for \(0 . \overline{n_{1}} n_{2} \cdots n_{p}\) d. Try the method of part (c) on the number \(0 . \overline{123456789}=0.123456789123456789 \ldots\) e. Prove that \(0 . \overline{9}=1\)
In the following exercises, two sequences are given, one of which initially has smaller values, but eventually "overtakes" the other sequence. Find the sequence with the larger growth rate and the value of \(n\) at which it overtakes the other sequence. $$a_{n}=n^{1.001} \text { and } b_{n}=\ln n^{10}, n \geq 1$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.