Chapter 8: Problem 103
Here is a fascinating (unsolved) problem known as the hailstone problem (or the Ulam Conjecture or the Collatz Conjecture). It involves sequences in two different ways. First, choose a positive integer \(N\) and call it \(a_{0} .\) This is the seed of a sequence. The rest of the sequence is generated as follows: For \(n=0,1,2, \ldots\) $$a_{n+1}=\left\\{\begin{array}{ll} a_{n} / 2 & \text { if } a_{n} \text { is even } \\ 3 a_{n}+1 & \text { if } a_{n} \text { is odd .} \end{array}\right.$$ However, if \(a_{n}=1\) for any \(n,\) then the sequence terminates. a. Compute the sequence that results from the seeds \(N=2,3\), \(4, \ldots, 10 .\) You should verify that in all these cases, the sequence eventually terminates. The hailstone conjecture (still unproved) states that for all positive integers \(N\), the sequence terminates after a finite number of terms. b. Now define the hailstone sequence \(\left\\{H_{k}\right\\},\) which is the number of terms needed for the sequence \(\left\\{a_{n}\right\\}\) to terminate starting with a seed of \(k\). Verify that \(H_{2}=1, H_{3}=7\), and \(H_{4}=2\). c. Plot as many terms of the hailstone sequence as is feasible. How did the sequence get its name? Does the conjecture appear to be true?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.