Chapter 8: Problem 102
Pick two positive numbers \(a_{0}\) and \(b_{0}\) with \(a_{0}>b_{0},\) and write out the first few terms of the two sequences \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}:\) $$a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad \text { for } n=0,1,2 \dots$$ (Recall that the arithmetic mean \(A=(p+q) / 2\) and the geometric mean \(G=\sqrt{p q}\) of two positive numbers \(p\) and \(q\) satisfy \(A \geq G.)\) a. Show that \(a_{n} > b_{n}\) for all \(n\). b. Show that \(\left\\{a_{n}\right\\}\) is a decreasing sequence and \(\left\\{b_{n}\right\\}\) is an increasing sequence. c. Conclude that \(\left\\{a_{n}\right\\}\) and \(\left\\{b_{n}\right\\}\) converge. d. Show that \(a_{n+1}-b_{n+1}<\left(a_{n}-b_{n}\right) / 2\) and conclude that \(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} .\) The common value of these limits is called the arithmetic-geometric mean of \(a_{0}\) and \(b_{0},\) denoted \(\mathrm{AGM}\left(a_{0}, b_{0}\right)\). e. Estimate AGM(12,20). Estimate Gauss' constant \(1 / \mathrm{AGM}(1, \sqrt{2})\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.