Chapter 8: Problem 100
For a positive real number \(p,\) the tower of exponents \(p^{p^{p}}\) continues indefinitely and the expression is ambiguous. The tower could be built from the top as the limit of the sequence \(\left\\{p^{p},\left(p^{p}\right)^{p},\left(\left(p^{p}\right)^{p}\right)^{p}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=a_{n}^{p}(\text { building from the top })\) where \(a_{1}=p^{p} .\) The tower could also be built from the bottom as the limit of the sequence \(\left\\{p^{p}, p^{\left(p^{p}\right)}, p^{\left(p^{(i)}\right)}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=p^{a_{n}}(\text { building from the bottom })\) where again \(a_{1}=p^{p}\). a. Estimate the value of the tower with \(p=0.5\) by building from the top. That is, use tables to estimate the limit of the sequence defined recursively by (1) with \(p=0.5 .\) Estimate the maximum value of \(p > 0\) for which the sequence has a limit. b. Estimate the value of the tower with \(p=1.2\) by building from the bottom. That is, use tables to estimate the limit of the sequence defined recursively by (2) with \(p=1.2 .\) Estimate the maximum value of \(p > 1\) for which the sequence has a limit.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.