Chapter 8: Problem 100
Consider series \(S=\sum_{k=0}^{n} r^{k},\) where \(|r|<1\) and its sequence of partial sums \(S_{n}=\sum_{k=0}^{n} r^{k}\) a. Complete the following table showing the smallest value of \(n,\) calling it \(N(r),\) such that \(\left|S-S_{n}\right|<10^{-4},\) for various values of \(r .\) For example, with \(r=0.5\) and \(S=2,\) we find that \(\left|S-S_{13}\right|=1.2 \times 10^{-4}\) and \(\left|S-S_{14}\right|=6.1 \times 10^{-5}\) Therefore, \(N(0.5)=14\) $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline r & -0.9 & -0.7 & -0.5 & -0.2 & 0 & 0.2 & 0.5 & 0.7 & 0.9 \\ \hline N(r) & & & & & & & 14 & & \\ \hline \end{array}$$ b. Make a graph of \(N(r)\) for the values of \(r\) in part (a). c. How does the rate of convergence of the geometric series depend on \(r ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.