Chapter 8: Problem 1
What is the defining characteristic of a geometric series? Give an example.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 8: Problem 1
What is the defining characteristic of a geometric series? Give an example.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe fractal called the snowflake island (or Koch island ) is constructed as follows: Let \(I_{0}\) be an equilateral triangle with sides of length \(1 .\) The figure \(I_{1}\) is obtained by replacing the middle third of each side of \(I_{0}\) with a new outward equilateral triangle with sides of length \(1 / 3\) (see figure). The process is repeated where \(I_{n+1}\) is obtained by replacing the middle third of each side of \(I_{n}\) with a new outward equilateral triangle with sides of length \(1 / 3^{n+1}\). The limiting figure as \(n \rightarrow \infty\) is called the snowflake island. a. Let \(L_{n}\) be the perimeter of \(I_{n} .\) Show that \(\lim _{n \rightarrow \infty} L_{n}=\infty\) b. Let \(A_{n}\) be the area of \(I_{n} .\) Find \(\lim _{n \rightarrow \infty} A_{n} .\) It exists!
For a positive real number \(p,\) the tower of exponents \(p^{p^{p}}\) continues indefinitely and the expression is ambiguous. The tower could be built from the top as the limit of the sequence \(\left\\{p^{p},\left(p^{p}\right)^{p},\left(\left(p^{p}\right)^{p}\right)^{p}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=a_{n}^{p}(\text { building from the top })\) where \(a_{1}=p^{p} .\) The tower could also be built from the bottom as the limit of the sequence \(\left\\{p^{p}, p^{\left(p^{p}\right)}, p^{\left(p^{(i)}\right)}, \ldots .\right\\},\) in which case the sequence is defined recursively as \(a_{n+1}=p^{a_{n}}(\text { building from the bottom })\) where again \(a_{1}=p^{p}\). a. Estimate the value of the tower with \(p=0.5\) by building from the top. That is, use tables to estimate the limit of the sequence defined recursively by (1) with \(p=0.5 .\) Estimate the maximum value of \(p > 0\) for which the sequence has a limit. b. Estimate the value of the tower with \(p=1.2\) by building from the bottom. That is, use tables to estimate the limit of the sequence defined recursively by (2) with \(p=1.2 .\) Estimate the maximum value of \(p > 1\) for which the sequence has a limit.
The Greeks solved several calculus problems almost 2000 years before the discovery of calculus. One example is Archimedes' calculation of the area of the region \(R\) bounded by a segment of a parabola, which he did using the "method of exhaustion." As shown in the figure, the idea was to fill \(R\) with an infinite sequence of triangles. Archimedes began with an isosceles triangle inscribed in the parabola, with area \(A_{1}\), and proceeded in stages, with the number of new triangles doubling at each stage. He was able to show (the key to the solution) that at each stage, the area of a new triangle is \(\frac{1}{8}\) of the area of a triangle at the previous stage; for example, \(A_{2}=\frac{1}{8} A_{1},\) and so forth. Show, as Archimedes did, that the area of \(R\) is \(\frac{4}{3}\) times the area of \(A_{1}\).
Consider the geometric series \(f(r)=\sum_{k=0}^{\infty} r^{k},\) where \(|r|<1\) a. Fill in the following table that shows the value of the series \(f(r)\) for various values of \(r\) $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline r & -0.9 & -0.7 & -0.5 & -0.2 & 0 & 0.2 & 0.5 & 0.7 & 0.9 \\ \hline f(r) & & & & & & & & & \\ \hline \end{array}$$ b. Graph \(f,\) for \(|r|<1\) \text { c. Evaluate } \lim _{r \rightarrow 1^{-}} f(r) \text { and } \lim _{r \rightarrow-1^{+}} f(r)
Suppose an alternating series \(\sum(-1)^{k} a_{k}\) with terms that are non increasing in magnitude, converges to \(S\) and the sum of the first \(n\) terms of the series is \(S_{n} .\) Suppose also that the difference between the magnitudes of consecutive terms decreases with \(k .\) It can be shown that for \(n \geq 1\) \(\left|S-\left(S_{n}+\frac{(-1)^{n+1} a_{n+1}}{2}\right)\right| \leq \frac{1}{2}\left|a_{n+1}-a_{n+2}\right|\) a. Interpret this inequality and explain why it is a better approximation to \(S\) than \(S_{n}\) b. For the following series, determine how many terms of the series are needed to approximate its exact value with an error less than \(10^{-6}\) using both \(S_{n}\) and the method explained in part (a). (i) \(\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}\) (ii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}\) (iii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.