Chapter 8: Problem 1
Explain how the Ratio Test works.
Chapter 8: Problem 1
Explain how the Ratio Test works.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit of the sequence $$\left\\{a_{n}\right\\}_{n=2}^{\infty}=\left\\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{n}\right)\right\\}_{n=2}^{\infty}.$$
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. The Consumer Price Index (the CPI is a measure of the U.S. cost of living) is given a base value of 100 in the year \(1984 .\) Assume the CPI has increased by an average of \(3 \%\) per year since \(1984 .\) Let \(c_{n}\) be the CPI \(n\) years after \(1984,\) where \(c_{0}=100\)
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{3 n^{2}}{4 n^{2}+1}=\frac{3}{4}$$
Consider the geometric series \(f(r)=\sum_{k=0}^{\infty} r^{k},\) where \(|r|<1\) a. Fill in the following table that shows the value of the series \(f(r)\) for various values of \(r\) $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline r & -0.9 & -0.7 & -0.5 & -0.2 & 0 & 0.2 & 0.5 & 0.7 & 0.9 \\ \hline f(r) & & & & & & & & & \\ \hline \end{array}$$ b. Graph \(f,\) for \(|r|<1\) \text { c. Evaluate } \lim _{r \rightarrow 1^{-}} f(r) \text { and } \lim _{r \rightarrow-1^{+}} f(r)
Express each sequence \(\left\\{a_{n}\right\\}_{n=1}^{\infty}\) as an equivalent sequence of the form \(\left\\{b_{n}\right\\}_{n=3}^{\infty}\). $$\\{2 n+1\\}_{n=1}^{\infty}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.